首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7641篇
  免费   315篇
  国内免费   374篇
电工技术   102篇
综合类   321篇
化学工业   658篇
金属工艺   1055篇
机械仪表   1245篇
建筑科学   68篇
矿业工程   37篇
能源动力   214篇
轻工业   55篇
水利工程   24篇
石油天然气   29篇
武器工业   94篇
无线电   1979篇
一般工业技术   1715篇
冶金工业   119篇
原子能技术   148篇
自动化技术   467篇
  2024年   10篇
  2023年   101篇
  2022年   143篇
  2021年   179篇
  2020年   159篇
  2019年   128篇
  2018年   153篇
  2017年   171篇
  2016年   191篇
  2015年   213篇
  2014年   411篇
  2013年   398篇
  2012年   383篇
  2011年   526篇
  2010年   361篇
  2009年   378篇
  2008年   406篇
  2007年   451篇
  2006年   442篇
  2005年   382篇
  2004年   361篇
  2003年   289篇
  2002年   307篇
  2001年   218篇
  2000年   195篇
  1999年   196篇
  1998年   207篇
  1997年   194篇
  1996年   161篇
  1995年   112篇
  1994年   112篇
  1993年   109篇
  1992年   64篇
  1991年   58篇
  1990年   60篇
  1989年   28篇
  1988年   32篇
  1987年   13篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有8330条查询结果,搜索用时 15 毫秒
1.
Two types of transparent Y2O3 ceramics without including large scattering sources such as residual pores, one with very high optical homogeneity (type A) and another one with slightly insufficient optical homogeneity (type B), are purposely prepared, and their optical properties are investigated and compared qualitatively and quantitatively. Type A ceramic exhibits transmittance characteristics with very low internal loss in the visible to infrared wavelength region, while type B ceramic is inferior in various optical performances especially in the short (visible) wavelength region. In type B ceramic, birefringence occurs due to optical inhomogeneity in the visible region, resulting in a decrease in the extinction ratio. Non-uniform refractive index distribution is also observed in the Schlieren image of type B ceramic, hence the laser beam quality through that material is degraded. This study proved the importance of optical homogeneity of transparent ceramics and clarified the problems in actual applications.  相似文献   
2.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
3.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
4.
Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σy),ultimate tensile strength(σUTS)and elongation(εUST)were 645 MPa,917 MPa and 27.0%respectively.The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation.These cellular structures together with oxide particle inclusions were deemed to strengthen the material.The other contributing components include dislocation strengthening,friction stress and grain bound-ary strengthening.The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity(TWIP and TRIP).Tensile tests performed at-40℃and-130℃demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively.However,almost no twinning was observed in the fractured sample tested at-40℃and-130℃.Instead,higher fraction of strain-induced hexagonal close-packed(HCP)ε phase transformation of 21.2%were observed for fractured sample tested at-40℃,compared with 6.3%in fractured room temperature sample.  相似文献   
5.
CoCrNiCux (x=0.16,0.33,0.75,and 1) without macro-segregation medium-entropy alloys (MEAs) was prepared using laser directed energy deposition (LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increas-ing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addi-tion,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.  相似文献   
6.
When a laser beam induces surface tension gradient at the free surface of a liquid, a weak surface depression is expected and has been observed. Here we report giant depression and rupture in “optothermocapillary fluids” under the illumination of laser and sunlight. Computational fluid dynamics models were developed to understand the surface deformation and provided desirable physical parameters of the fluid for maximum deformation. New optothermocapillary fluids were created by mixing transparent lamp oil with different candle dyes. They can be cut open by sunlight and be patterned to different shapes and sizes using an ordinary laser show projector or a common laser pointer. Laser driving and elevation of optothermocapillary fluids, in addition to the manipulation of different droplets on their surface, were demonstrated as an efficient controlling method and platform for optofluidic operations. The fundamental understanding of light-induced giant depression and creation of new optothermocapillary fluids encourage the fundamental research and applications of optofluidics.  相似文献   
7.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
8.
《Ceramics International》2022,48(5):6294-6301
Materials with high thermo mechanical properties are required as laser media for high-powered lasers. One of such materials is lutetium-aluminum garnet (LuAG) doped with ytterbium. In the present work, we discuss for the first time a full comparative study of 5% Yb-doped LuYAG ceramics with variation Lu/Y ratio. Samples were prepared with addition of B2O3, MgO and SiO2 which were used as sintering aids. Grain sizes, shrinkage curves, lattice constants and transmission spectra were measured for all samples. Thermal conductivity was measured in a wide temperature range for all studied samples. Output power of 12 W and 60% slope efficiency were obtained on the 5% Yb:LuAG disk laser.  相似文献   
9.
《工程(英文)》2020,6(12):1395-1402
In this report, we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimization of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1−x)Se2 (CIGS) modules. In this way, we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished. Specifically, by analyzing the standard P1 patterning line ablated before the CIGS deposition, we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath. We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope (SEM) cross-section, where a reduction of the photoemission cannot be explained by a thickness variation. We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS. We then document, for the first time, the existence of a short-range damaged area, which is independent of the application of an optical aperture on the laser path. Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.  相似文献   
10.
The parameters governing the crystallisation of paracetamol using various conventional techniques has been extensively studied, however the factors influencing the drug crystallisation using spray drying is not as well understood. The aim of this work was to investigate the crystallisation of an active pharmaceutical ingredient through evaporative crystallisation using a spray dryer to study the physicochemical properties of the drug and to use semi-empirical equations to gain insight into the morphology and particle size of the dried powder. Paracetamol solutions were spray dried at various inlet temperatures ranging from 60 °C to 120 °C and also from a series of inlet feed solvent compositions ranging from 50/50% v/v ethanol/water to 100% ethanol and solid-state characterisation was done. The size and morphology of the dried materials were altered with a change in spray drying parameters, with an increase in inlet temperature leading to an increase in particle Sauter mean diameter (from 3.0 to 4.4 µm) and a decrease in the particle size with an increase in ethanol concentration in the feed (from 4.6 to 4.4 µm) as a result of changes in particle density and atomised droplet size. The morphology of the dried particles consisted of agglomerates of individual crystallites bound together into larger semi-spherical agglomerates with a higher tendency for particles having crystalline ridges to form at higher ethanol concentrations of the feed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号